MongoDB Part2

 

1.     Aggregations Exercise in MongoDB-I

 

AIM: To demonstrate Aggregations in MongoDB

 

THEORY:

Aggregations operations process data records and return computed results. Aggregation operations group values from multiple documents together, and can perform a variety of operations on the grouped data to return a single result. MongoDB provides three ways to perform aggregation: the aggregation pipeline, the map-reduce function, and single purpose aggregation methods.

Syntax 

db.collection.aggregate(pipeline, options)

Parameters

Parameter Details

1.      pipeline array(A sequence of data aggregation operations or stages)

2.      options document(optional, available only if pipeline present as an array)

 

 

PROGRAM:

 

Example: Insert following documents in transcations collection

>db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});

>db.transactions.insert({ cr_dr : "C", amount : 100, fee : 2});

>db.transactions.insert({ cr_dr : "C", amount : 10, fee : 2});

>db.transactions.insert({ cr_dr : "D", amount : 100, fee : 4});

>db.transactions.insert({ cr_dr : "D", amount : 10, fee : 2});

>db.transactions.insert({ cr_dr : "C", amount : 10, fee : 4});

>db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});

Count

How do you get the number of Debit and Credit transactions? One way to do it is by using count() function as below.

>db.transactions.count({cr_db:'D'})

O/p: 4

>db.transactions.count({cr_db:'C'})

O/p: 3

But what if you do not know the possible values of cr_db upfront. Here Aggregation framework comes to play.

>db.transactions.aggregate( [ { $group: { _id:'$cr_db', count: { $sum: 1 } } }])

O/p: :[ { _id: 'C', count: 3 }, { _id: 'D', count: 4 } ]

To get the summation of amount

>db.transactions.aggregate( [ { $group: { _id:'$cr_db', count: { $sum: 1 }, totalAmount:{$sum:'$amount'} } }])

O/p: :[

               { _id: 'C', count: 3, totalAmount: 120 },

               { _id: 'D', count: 4, totalAmount: 310 }

           ]

Adding Amount and fee by group of CR_DB

>db.transactions.aggregate({$group: { _id: '$cr_db', count: {$sum:1}, TotalAmount:{$sum:{ $sum: ['$amount','$fee']}}}})

[

{ _id: 'C', count: 3, TotalAmount: 128 },

{ _id: 'D', count: 4, TotalAmount: 320 }

]

 

 

 

 

 

2.     Aggregations Exercise II in MongoDB

 

AIM: To demonstrate Aggregations with Match and Group stages

 

PROGRAM:

 

Sample Data:

db.employees.insertMany([

    {

        _id:1,

firstName: "John",

lastName: "King",

gender:'male',

        email: "john.king@abc.com",

        salary: 5000,

        department: {

                    "name":"HR"

                }

    },

    {

        _id:2,

firstName: "Sachin",

lastName: "T",

gender:'male',

        email: "sachin.t@abc.com",

        salary: 8000,

        department: {

                    "name":"Finance"

                }

    },

    {

        _id:3,

firstName: "James",

lastName: "Bond",

gender:'male',

        email: "jamesb@abc.com",

        salary: 7500,

        department: {

                    "name":"Marketing"

                }

    },

    {

        _id:4,

firstName: "Rosy",

lastName: "Brown",

gender:'female',

        email: "rosyb@abc.com",

        salary: 5000,

        department: {

                    "name":"HR"

                }

 

    },

    {

        _id:5,

firstName: "Kapil",

lastName: "D",

gender:'male',

        email: "kapil.d@abc.com",

        salary: 4500,

        department: {

                    "name":"Finance"

                }

 

    },

    {

        _id:6,

firstName: "Amitabh",

lastName: "B",

gender:'male',

        email: "amitabh.b@abc.com",

        salary: 7000,

        department: {

                    "name":"Marketing"

                }

    }

])

$match Stage

The $match stage is usually the first stage to select only the matching documents from a collection. It is equivalent to the Find() method. 

db.employees.aggregate([{$match:{gender:'female'}}])

 

Output

[

  {

    _id: 4,

firstName: 'Rosy',

lastName: 'Brown',

    gender: 'female',

    email: 'rosyb@abc.com',

    salary: 5000,

    department: { name: 'HR' }

  }

]

 

The $match stage in the aggregate() method gives the same output as the find() method. The db.persons.find({ gender: 'female' }) would return the same data as above.

$group Stage

Use the $group stage to group the input documents by the specified _id expression and returns a single document containing the accumulated values for each distinct group. Consider the following example.

Example: $group Stage

 Copy

db.employees.aggregate([

{ $group:{ _id:'$department.name'} }

])

Output

[ { _id: 'Marketing' }, { _id: 'HR' }, { _id: 'Finance' } ]

 

The $match stage in the aggregate() method gives the same output as the find() method. The db.persons.find({ gender: 'female' }) would return the same data as above.

In the above example, only the $group stage is specified in the pipeline array. The $group uses _id field to calculate the accumulated values for all the input documents as a whole. The expression { _id:'$department.name'} creates the distinct group on the field $department.name. Since we don't calculate any accumulated values, it returns the distinct values of $department.name, as shown below.

Now, let's calculate the accumulated values for each group. The following calculates the number of employees in each department.

Example: Get Accumulated Values

 Copy

db.employees.aggregate([

{ $group:{ _id:'$department.name', totalEmployees: { $sum:1 } }

}])

Output

[

{ _id: 'Marketing', totalEmployees: 2 },

{ _id: 'HR', totalEmployees: 2 },

{ _id: 'Finance', totalEmployees: 2 }

]

In the above example, we create distinct groups using _id:'$department.name' expression. In the second expression totalEmployees: { $sum:1 }, the totalEmployees is a field that will be included in the output, and { $sum:1 } is an accumulator expression where $sum is an Accumulator Operator that returns a sum of numerical values. Here, { $sum:1 } adds 1 for each document that falls under the same group.

The following aggregation pipeline contains two stages.

Example: $match and $group

 Copy

db.employees.aggregate([

{ $match:{ gender:'male'}},

{ $group:{ _id:'$department.name', totalEmployees: { $sum:1 } }

}])

Output

[

{ _id: 'Marketing', totalEmployees: 2 },

{ _id: 'HR', totalEmployees: 1 },

{ _id: 'Finance', totalEmployees: 2 }

]

In the above example, the first stage selects all male employees and passes them as input to the second stage $group as an input. So, the output calculates the sum of all male employees.

The following calculates the sum of salaries of all male employees in the same department.

Example: Get Sum of Fields

 Copy

db.employees.aggregate([

{ $match:{ gender:'male'}},

{ $group:{ _id:{ deptName:'$department.name'}, totalSalaries: { $sum:'$salary'} }

}])

Output

[

{ _id: 'Finance', totalSalaries: 12500 },

{ _id: 'HR', totalSalaries: 10000 },

{ _id: 'Marketing', totalSalaries: 14500 }

]

In the above example, { $match:{ gender:'male'}} returns all male employees. In the $group stage, an accumulator expression totalSalaries: { $sum:'$salary'} sums up numeric field salary and include it as totalSalaries in the output for each group.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.     Use Of Operators in CRUD in MongoDB

 

AIM: To demonstrate use of various Operators in MongoDB

 

THEORY:

 

 In MongoDB, operators are used to perform various operations on data. Here are some examples of operators commonly used in MongoDB:

 

Comparison Operators:

$eq: Matches values that are equal to a specified value.

$ne: Matches values that are not equal to a specified value.

$gt: Matches values that are greater than a specified value.

$lt: Matches values that are less than a specified value.

$gte: Matches values that are greater than or equal to a specified value.

$lte: Matches values that are less than or equal to a specified value.

 

Logical Operators:

$and: Joins query clauses with a logical AND.

$or: Joins query clauses with a logical OR.

$not: Inverts the effect of a query expression.

 

Array Operators:

$in: Matches any of the values specified in an array.

$all: Matches arrays that contain all the specified elements.

$size: Matches arrays with a specific number of elements.

 

Array Update Operators:

$push: Appends a value to an array field.

$pull: Removes all instances of a value from an array field.

$addToSet: Adds a value to an array field if it does not already exist.

$pop: Removes the first or last element of an array field.

 

These are just a few examples of the operators available in MongoDB. MongoDB provides a rich set of operators to query and manipulate data efficiently.

 

PROGRAM:

 

Create users collection with name, age

 

// Find documents where the age is greater than 30

db.users.find({ age: { $gt: 30 } });

 

// Find documents where the name is not equal to "John"

db.users.find({ name: { $ne: "John" } });

 

// Find documents where the age is greater than 30 AND the name is "John"

db.users.find({ $and: [{ age: { $gt: 30 } }, { name: "John" }] });

 

// Find documents where the age is less than 25 OR the name is "Jane"

db.users.find({ $or: [{ age: { $lt: 25 } }, { name: "Jane" }] });

Create articles collection with tags fields

// Find documents where the "tags" field contains either "mongodb" or "database"

db.articles.find({ tags: { $in: ["mongodb", "database"] } });

 

Create students collection with scores in subjects

// Find documents where the "scores" array has exactly 3 elements

db.students.find({ scores: { $size: 3 } });

Array Update operators

 

Create required collections with documents before.

 

// Add a new element to the "tags" array field

db.articles.updateOne({ _id: ObjectId("articleId") }, { $push: { tags: "mongodb" } });

 

// Remove all occurrences of the value "completed" from the "status" array field

db.tasks.updateMany({}, { $pull: { status: "completed" } });

 

// Add the value "John" to the "names" array field if it doesn't exist

db.users.updateOne({ _id: ObjectId("userId") }, { $addToSet: { names: "John" } });

 

// Remove the last element from the "scores" array field

db.students.updateOne({ _id: ObjectId("studentId") }, { $pop: { scores: 1 } });

 

// Remove the first element from the "scores" array field

db.students.updateOne({ _id: ObjectId("studentId") }, { $pop: { scores: -1 } });

 

These commands demonstrate how to use the array update operators in MongoDB to modify array fields within documents. Remember to replace the placeholders like "articleId," "userId," and "studentId" with the actual document IDs or appropriate query conditions.

 

 

 

 

 

 

 

 

4.     Index Management in MongoDB

 

AIM: To demonstrate Index Management MongoDB

 

THEORY:

Indexes support the efficient resolution of queries. Without indexes, MongoDB must scan every document of a collection to select those documents that match the query statement. This scan is highly inefficient and require MongoDB to process a large volume of data.

Indexes are special data structures, that store a small portion of the data set in an easy-to-traverse form. The index stores the value of a specific field or set of fields, ordered by the value of the field as specified in the index.

 

PROCEDURE:

 

The createIndex() Method

To create an index, you need to use createIndex() method of MongoDB.

Syntax

The basic syntax of createIndex() method is as follows

>db.COLLECTION_NAME.createIndex({name:1})

Here key is the name of the field on which you want to create index and 1 is for ascending order. To create index in descending order you need to use -1.

 

In createIndex() method you can pass multiple fields, to create index on multiple fields.

 

The dropIndex() method

You can drop a particular index using the dropIndex() method of MongoDB.

Syntax

The basic syntax of DropIndex() method is as follows().

>db.COLLECTION_NAME.dropIndex({name:1})

 

PROGRAM:

 

Example of CreateIndex

 

>db.mycol.cretaeIndex({"title":1})

{

 

    "createdCOllectionAUtomatically" : false,

    "numIndexesBefore" : 1,

    "numIndexesAfter" : 2,

    "ok" : 1

 

}

 

Example of CreateIndex (MultiField Index)

>db.mycol.createIndex({"title":1,"description':-1})

 

use >db.col.getIndexes() to list out all Indexes in the collection

 

Example of dropIndex

 

>db.mycol.dropIndex({"title":1})

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.     CRUD Operations in MONGODB from Python ExerciseI: Sports database

AIM: To insert Sports Data in MongoDB from Python Program using Pymongo Drivers

 

THEORY:

 

PyMongo is a Python library that allows you to interact with MongoDB, a popular NoSQL database. PyMongo provides a convenient and intuitive way to work with MongoDB by translating Python code into database operations.

 

PROGRAM:

 

In Jupyter Cell execute ‘pip install pymongo’

After execution Restart Kernel

Write following Code in Jupyter and execute

import pymongo

url='mongodb://localhost:27017/'

client=pymongo.MongoClient(url)

db1=client['sports']

col1=db1['col11']

doc1={'name':'cricket','level':'international','no':11}

col1.insert_one(doc1)

doc2={'name':'hockey','level':'national','no':10}

col1.insert_one(doc2)

doc3={'name':'FootBall','level':'international','no':10}

col1.insert_one(doc3)

#Inserting documents with embedded documents with array fields

import pymongo

url='mongodb://localhost:27017/'

client=pymongo.MongoClient(url)

db1=client['sports']

col4 = db1['cricket']

doc4={'name':'cricket','level':'ipl','no':11,'players':{'batsmen':['virat','dhoni','rohit','kl rahul','sky'],'bowlers':['shami','kuldeep','ashwin','jadeja','bumrah'],'wicketkeeper':'dhoni'}}

col4.insert_one(doc4)

 

Now Open MongoShell or Compass and test the data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.     CRUD Operations in MONGODB from Python Exercise–II: Fruits Database

 

AIM: To insert Sports Data in MongoDB from Python Program using Pymongo Drivers

 

THEORY:

PyMongo is a Python library that allows you to interact with MongoDB, a popular NoSQL database. PyMongo provides a convenient and intuitive way to work with MongoDB by translating Python code into database operations.

 

PROGRAM:

 

In Jupyter Cell execute ‘pip install pymongo’

After execution Restart Kernel

Write following Code in Jupyter and execute

import pymongo

# Connect to MongoDB server

client = pymongo.MongoClient("mongodb://localhost:27017/")

 

# Create the Fruits database and New collection

db = client["Fruits"]

collection = db["New"]

# Define the documents to insert

document1 = {

    "name": "banana",

    "color": "yellow",

    "no": 5,

    "price": 10

}

document2 = {

    "name": "grape",

    "color": "dark blue",

    "no": 100,

    "price": 2

}

# Insert the documents into the collection

collection.insert_many([document1, document2])

# Create the Countries database and New1 collection

db = client["Countries"]

collection = db["New1"]

# Define the documents to insert

document1 = {

    "name": "India",

    "capital": "delhi",

    "no_states": 28

}

document2 = {

    "name": "USA",

    "capital": "Washington DC",

    "no_states": 50

}

# Insert the documents into the collection

collection.insert_many([document1, document2])

  To test data in MongoDB, open Mongoshell or compass and check data


Comments

Popular posts from this blog

Create and drop Database and Collection

MongoDB Part1